Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
The top-level namespace within Feast is a project. Users define one or more feature views within a project. Each feature view contains one or more features. These features typically relate to one or more entities. A feature view must always have a data source, which in turn is used during the generation of training datasets and when materializing feature values into the online store.
Projects provide complete isolation of feature stores at the infrastructure level. This is accomplished through resource namespacing, e.g., prefixing table names with the associated project. Each project should be considered a completely separate universe of entities and features. It is not possible to retrieve features from multiple projects in a single request. We recommend having a single feature store and a single project per environment (dev
, staging
, prod
).
For offline use cases that only rely on batch data, Feast does not need to ingest data and can query your existing data (leveraging a compute engine, whether it be a data warehouse or (experimental) Spark / Trino). Feast can help manage pushing streaming features to a batch source to make features available for training.
For online use cases, Feast supports ingesting features from batch sources to make them available online (through a process called materialization), and pushing streaming features to make them available both offline / online. We explore this more in the next concept page (Data ingestion)
Features are registered as code in a version controlled repository, and tie to data sources + model versions via the concepts of entities, feature views, and feature services. We explore these concepts more in the upcoming concept pages. These features are then stored in a registry, which can be accessed across users and services. The features can then be retrieved via SDK API methods or via a deployed feature server which exposes endpoints to query for online features (to power real time models).
Feast supports several patterns of feature retrieval.
Feast (Feature Store) is a customizable operational data system that re-uses existing infrastructure to manage and serve machine learning features to realtime models.
Feast allows ML platform teams to:
Make features consistently available for training and serving by managing an offline store (to process historical data for scale-out batch scoring or model training), a low-latency online store (to power real-time prediction), and a battle-tested feature server (to serve pre-computed features online).
Avoid data leakage by generating point-in-time correct feature sets so data scientists can focus on feature engineering rather than debugging error-prone dataset joining logic. This ensure that future feature values do not leak to models during training.
Decouple ML from data infrastructure by providing a single data access layer that abstracts feature storage from feature retrieval, ensuring models remain portable as you move from training models to serving models, from batch models to realtime models, and from one data infra system to another.
Note: Feast today primarily addresses timestamped structured data.
Feast helps ML platform teams with DevOps experience productionize real-time models. Feast can also help these teams build towards a feature platform that improves collaboration between engineers and data scientists.
Feast is likely not the right tool if you
are in an organization that’s just getting started with ML and is not yet sure what the business impact of ML is
rely primarily on unstructured data
need very low latency feature retrieval (e.g. p99 feature retrieval << 10ms)
have a small team to support a large number of use cases
a data warehouse: Feast is not a replacement for your data warehouse or the source of truth for all transformed data in your organization. Rather, Feast is a light-weight downstream layer that can serve data from an existing data warehouse (or other data sources) to models in production.
a database: Feast is not a database, but helps manage data stored in other systems (e.g. BigQuery, Snowflake, DynamoDB, Redis) to make features consistently available at training / serving time
Many companies have used Feast to power real-world ML use cases such as:
Personalizing online recommendations by leveraging pre-computed historical user or item features.
Online fraud detection, using features that compare against (pre-computed) historical transaction patterns
Churn prediction (an offline model), generating feature values for all users at a fixed cadence in batch
Credit scoring, using pre-computed historical features to compute probability of default
Explore the following resources to get started with Feast:
The list below contains the functionality that contributors are planning to develop for Feast.
We welcome contribution to all items in the roadmap!
Have questions about the roadmap? Go to the Slack channel to ask on #feast-development.
Data Sources
Offline Stores