LogoLogo
v0.11-branch
v0.11-branch
  • Introduction
  • Quickstart
  • Getting started
    • Install Feast
    • Create a feature repository
    • Deploy a feature store
    • Build a training dataset
    • Load data into the online store
    • Read features from the online store
  • Community
  • Roadmap
  • Changelog
  • Concepts
    • Overview
    • Feature view
    • Data model
    • Online store
    • Offline store
    • Provider
    • Architecture
  • Reference
    • Data sources
      • BigQuery
      • File
    • Offline stores
      • File
      • BigQuery
    • Online stores
      • SQLite
      • Redis
      • Datastore
    • Providers
      • Local
      • Google Cloud Platform
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feast CLI reference
    • Python API reference
    • Usage
  • Feast on Kubernetes
    • Getting started
      • Install Feast
        • Docker Compose
        • Kubernetes (with Helm)
        • Amazon EKS (with Terraform)
        • Azure AKS (with Helm)
        • Azure AKS (with Terraform)
        • Google Cloud GKE (with Terraform)
        • IBM Cloud Kubernetes Service (IKS) and Red Hat OpenShift (with Kustomize)
      • Connect to Feast
        • Python SDK
        • Feast CLI
      • Learn Feast
    • Concepts
      • Overview
      • Architecture
      • Entities
      • Sources
      • Feature Tables
      • Stores
    • Tutorials
      • Minimal Ride Hailing Example
    • User guide
      • Overview
      • Getting online features
      • Getting training features
      • Define and ingest features
      • Extending Feast
    • Reference
      • Configuration Reference
      • Feast and Spark
      • Metrics Reference
      • Limitations
      • API Reference
        • Go SDK
        • Java SDK
        • Core gRPC API
        • Python SDK
        • Serving gRPC API
        • gRPC Types
    • Advanced
      • Troubleshooting
      • Metrics
      • Audit Logging
      • Security
      • Upgrading Feast
  • Contributing
    • Contribution process
    • Development guide
    • Versioning policy
    • Release process
Powered by GitBook
On this page

Was this helpful?

Edit on Git
Export as PDF
  1. Concepts

Online store

PreviousData modelNextOffline store

Last updated 3 years ago

Was this helpful?

The Feast online store is used for low-latency online feature value lookups. Feature values are loaded into the online store from data sources in feature views using the materialize command.

The storage schema of features within the online store mirrors that of the data source used to populate the online store. One key difference between the online store and data sources is that only the latest feature values are stored per entity key. No historical values are stored.

Example batch data source

Once the above data source is materialized into Feast (using feast materialize), the feature values will be stored as follows: