Quickstart

In this tutorial we will

  1. Deploy a local feature store with a Parquet file offline store and Sqlite online store.

  2. Build a training dataset using our time series features from our Parquet files.

  3. Materialize feature values from the offline store into the online store.

  4. Read the latest features from the online store for inference.

Install Feast

Install the Feast SDK and CLI using pip:

pip install feast

Create a feature repository

Bootstrap a new feature repository using feast init from the command line:

feast init feature_repo
cd feature_repo
Creating a new Feast repository in /home/Jovyan/feature_repo.

Register feature definitions and deploy your feature store

The apply command registers all the objects in your feature repository and deploys a feature store:

Generating training data

The apply command builds a training dataset based on the time-series features defined in the feature repository:

Load features into your online store

The materialize command loads the latest feature values from your feature views into your online store:

Fetching feature vectors for inference

Next steps

  • Follow our Getting Started guide for a hands tutorial in using Feast

  • Join other Feast users and contributors in Slack and become part of the community!

Last updated

Was this helpful?