LogoLogo
v0.11-branch
v0.11-branch
  • Introduction
  • Quickstart
  • Getting started
    • Install Feast
    • Create a feature repository
    • Deploy a feature store
    • Build a training dataset
    • Load data into the online store
    • Read features from the online store
  • Community
  • Roadmap
  • Changelog
  • Concepts
    • Overview
    • Feature view
    • Data model
    • Online store
    • Offline store
    • Provider
    • Architecture
  • Reference
    • Data sources
      • BigQuery
      • File
    • Offline stores
      • File
      • BigQuery
    • Online stores
      • SQLite
      • Redis
      • Datastore
    • Providers
      • Local
      • Google Cloud Platform
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feast CLI reference
    • Python API reference
    • Usage
  • Feast on Kubernetes
    • Getting started
      • Install Feast
        • Docker Compose
        • Kubernetes (with Helm)
        • Amazon EKS (with Terraform)
        • Azure AKS (with Helm)
        • Azure AKS (with Terraform)
        • Google Cloud GKE (with Terraform)
        • IBM Cloud Kubernetes Service (IKS) and Red Hat OpenShift (with Kustomize)
      • Connect to Feast
        • Python SDK
        • Feast CLI
      • Learn Feast
    • Concepts
      • Overview
      • Architecture
      • Entities
      • Sources
      • Feature Tables
      • Stores
    • Tutorials
      • Minimal Ride Hailing Example
    • User guide
      • Overview
      • Getting online features
      • Getting training features
      • Define and ingest features
      • Extending Feast
    • Reference
      • Configuration Reference
      • Feast and Spark
      • Metrics Reference
      • Limitations
      • API Reference
        • Go SDK
        • Java SDK
        • Core gRPC API
        • Python SDK
        • Serving gRPC API
        • gRPC Types
    • Advanced
      • Troubleshooting
      • Metrics
      • Audit Logging
      • Security
      • Upgrading Feast
  • Contributing
    • Contribution process
    • Development guide
    • Versioning policy
    • Release process
Powered by GitBook
On this page
  • Retrieving online features
  • 1. Ensure that feature values have been loaded into the online store
  • 2. Define feature references
  • 3. Read online features

Was this helpful?

Edit on Git
Export as PDF
  1. Getting started

Read features from the online store

PreviousLoad data into the online storeNextCommunity

Last updated 3 years ago

Was this helpful?

The Feast Python SDK allows users to retrieve feature values from an online store. This API is used to look up feature values at low latency during model serving in order to make online predictions.

Online stores only maintain the current state of features, i.e latest feature values. No historical data is stored or served.

Retrieving online features

1. Ensure that feature values have been loaded into the online store

Please ensure that you have materialized (loaded) your feature values into the online store before starting

2. Define feature references

Create a list of features that you would like to retrieve. This list typically comes from the model training step and should accompany the model binary.

feature_refs = [
    "driver_hourly_stats:conv_rate",
    "driver_hourly_stats:acc_rate"
]

3. Read online features

Next, we will create a feature store object and call get_online_features() which reads the relevant feature values directly from the online store.

fs = FeatureStore(repo_path="path/to/feature/repo")
online_features = fs.get_online_features(
    feature_refs=feature_refs,
    entity_rows=[
        {"driver_id": 1001},
        {"driver_id": 1002}]
).to_dict()
{
   "driver_hourly_stats__acc_rate":[
      0.2897740304470062,
      0.6447265148162842
   ],
   "driver_hourly_stats__conv_rate":[
      0.6508077383041382,
      0.14802511036396027
   ],
   "driver_id":[
      1001,
      1002
   ]
}
Load data into the online store