LogoLogo
v0.34-branch
v0.34-branch
  • Introduction
  • Community & getting help
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data ingestion
      • Entity
      • Feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
      • [Alpha] Saved dataset
    • Architecture
      • Overview
      • Registry
      • Offline store
      • Online store
      • Batch Materialization Engine
      • Provider
    • Third party integrations
    • FAQ
  • Tutorials
    • Sample use-case tutorials
      • Driver ranking
      • Fraud detection on GCP
      • Real-time credit scoring on AWS
      • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
      • Scaling Feast
      • Structuring Feature Repos
    • Running Feast in production (e.g. on Kubernetes)
    • Upgrading for Feast 0.20+
    • Customizing Feast
      • Adding a custom batch materialization engine
      • Adding a new offline store
      • Adding a new online store
      • Adding a custom provider
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Type System
    • Data sources
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Offline stores
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Online stores
      • Overview
      • SQLite
      • Snowflake
      • Redis
      • Dragonfly
      • Datastore
      • DynamoDB
      • Bigtable
      • PostgreSQL (contrib)
      • Cassandra + Astra DB (contrib)
      • MySQL (contrib)
      • Rockset (contrib)
      • Hazelcast (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
      • Azure
    • Batch Materialization Engines
      • Bytewax
      • Snowflake
      • AWS Lambda (alpha)
      • Spark (contrib)
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • [Alpha] Go feature server
      • [Alpha] AWS Lambda feature server
    • [Beta] Web UI
    • [Alpha] On demand feature view
    • [Alpha] Data quality monitoring
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Backwards Compatibility Policy
      • Maintainer Docs
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. How-to Guides
  2. Running Feast with Snowflake/GCP/AWS

Create a feature repository

PreviousInstall FeastNextDeploy a feature store

Last updated 1 year ago

Was this helpful?

A feature repository is a directory that contains the configuration of the feature store and individual features. This configuration is written as code (Python/YAML) and it's highly recommended that teams track it centrally using git. See for a detailed explanation of feature repositories.

The easiest way to create a new feature repository to use feast init command:

feast init

Creating a new Feast repository in /<...>/tiny_pika.
feast init -t snowflake
Snowflake Deployment URL: ...
Snowflake User Name: ...
Snowflake Password: ...
Snowflake Role Name: ...
Snowflake Warehouse Name: ...
Snowflake Database Name: ...

Creating a new Feast repository in /<...>/tiny_pika.
feast init -t gcp

Creating a new Feast repository in /<...>/tiny_pika.
feast init -t aws
AWS Region (e.g. us-west-2): ...
Redshift Cluster ID: ...
Redshift Database Name: ...
Redshift User Name: ...
Redshift S3 Staging Location (s3://*): ...
Redshift IAM Role for S3 (arn:aws:iam::*:role/*): ...
Should I upload example data to Redshift (overwriting 'feast_driver_hourly_stats' table)? (Y/n):

Creating a new Feast repository in /<...>/tiny_pika.

The init command creates a Python file with feature definitions, sample data, and a Feast configuration file for local development:

$ tree
.
└── tiny_pika
    ├── data
    │   └── driver_stats.parquet
    ├── example.py
    └── feature_store.yaml

1 directory, 3 files

Enter the directory:

# Replace "tiny_pika" with your auto-generated dir name
cd tiny_pika

You can now use this feature repository for development. You can try the following:

  • Run feast apply to apply these definitions to Feast.

  • Edit the example feature definitions in example.py and run feast apply again to change feature definitions.

  • Initialize a git repository in the same directory and checking the feature repository into version control.

Feature Repository