LogoLogo
v0.25-branch
v0.25-branch
  • Introduction
  • Community & getting help
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data ingestion
      • Entity
      • Feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
      • [Alpha] Saved dataset
    • Architecture
      • Overview
      • Registry
      • Offline store
      • Online store
      • Batch Materialization Engine
      • Provider
    • Third party integrations
    • FAQ
  • Tutorials
    • Sample use-case tutorials
      • Driver ranking
      • Fraud detection on GCP
      • Real-time credit scoring on AWS
      • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
      • Scaling Feast
      • Structuring Feature Repos
    • Running Feast in production (e.g. on Kubernetes)
    • Upgrading for Feast 0.20+
    • Customizing Feast
      • Adding a custom batch materialization engine
      • Adding a new offline store
      • Adding a new online store
      • Adding a custom provider
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Type System
    • Data sources
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Offline stores
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Online stores
      • Overview
      • SQLite
      • Snowflake
      • Redis
      • Datastore
      • DynamoDB
      • PostgreSQL (contrib)
      • Cassandra + Astra DB (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
      • Azure
    • Batch Materialization Engines
      • Bytewax
      • Snowflake
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • [Alpha] Go feature server
      • [Alpha] AWS Lambda feature server
    • [Beta] Web UI
    • [Alpha] On demand feature view
    • [Alpha] Data quality monitoring
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Backwards Compatibility Policy
      • Maintainer Docs
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Deploying
  • Cleaning up

Was this helpful?

Edit on GitHub
Export as PDF
  1. How-to Guides
  2. Running Feast with Snowflake/GCP/AWS

Deploy a feature store

PreviousCreate a feature repositoryNextBuild a training dataset

Last updated 2 years ago

Was this helpful?

The Feast CLI can be used to deploy a feature store to your infrastructure, spinning up any necessary persistent resources like buckets or tables in data stores. The deployment target and effects depend on the provider that has been configured in your file, as well as the feature definitions found in your feature repository.

Here we'll be using the example repository we created in the previous guide, . You can re-create it by running feast init in a new directory.

Deploying

To have Feast deploy your infrastructure, run feast apply from your command line while inside a feature repository:

feast apply

# Processing example.py as example
# Done!

Depending on whether the feature repository is configured to use a local provider or one of the cloud providers like GCP or AWS, it may take from a couple of seconds to a minute to run to completion.

At this point, no data has been materialized to your online store. Feast apply simply registers the feature definitions with Feast and spins up any necessary infrastructure such as tables. To load data into the online store, run feast materialize. See for more details.

Cleaning up

If you need to clean up the infrastructure created by feast apply, use the teardown command.

Warning: teardown is an irreversible command and will remove all feature store infrastructure. Proceed with caution!

feast teardown

****

feature_store.yaml
Create a feature store
Load data into the online store