LogoLogo
v0.12-branch
v0.12-branch
  • Introduction
  • Community
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data source
      • Entity
      • Feature view
      • Feature service
      • Feature retrieval
    • Architecture
      • Overview
      • Feature repository
      • Registry
      • Offline store
      • Online store
      • Provider
    • FAQ
  • Tutorials
    • Overview
    • Driver ranking
    • Fraud detection on GCP
    • Real-time credit scoring on AWS
  • How-to Guides
    • Running Feast with GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
    • Running Feast in production
    • Upgrading from Feast 0.9
    • Adding a custom provider
    • Adding a new online store
    • Adding a new offline store
  • Reference
    • Data sources
      • File
      • BigQuery
      • Redshift
    • Offline stores
      • File
      • BigQuery
      • Redshift
    • Online stores
      • SQLite
      • Redis
      • Datastore
      • DynamoDB
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Dataset
  • Feature References
  • Event timestamp

Was this helpful?

Edit on Git
Export as PDF
  1. Getting started
  2. Concepts

Feature retrieval

Dataset

A dataset is a collection of rows that is produced by a historical retrieval from Feast in order to train a model. A dataset is produced by a join from one or more feature views onto an entity dataframe. Therefore, a dataset may consist of features from multiple feature views.

Dataset vs Feature View: Feature views contain the schema of data and a reference to where data can be found (through its data source). Datasets are the actual data manifestation of querying those data sources.

Dataset vs Data Source: Datasets are the output of historical retrieval, whereas data sources are the inputs. One or more data sources can be used in the creation of a dataset.

Feature References

Feature references uniquely identify feature values in Feast. The structure of a feature reference in string form is as follows: <feature_view>:<feature>

Feature references are used for the retrieval of features from Feast:

online_features = fs.get_online_features(
    features=[
        'driver_locations:lon',
        'drivers_activity:trips_today'
    ],
    entity_rows=[{'driver': 'driver_1001'}]
)

It is possible to retrieve features from multiple feature views with a single request, and Feast is able to join features from multiple tables in order to build a training dataset. However, It is not possible to reference (or retrieve) features from multiple projects at the same time.

Event timestamp

The timestamp on which an event occurred, as found in a feature view's data source. The entity timestamp describes the event time at which a feature was observed or generated.

Event timestamps are used during point-in-time joins to ensure that the latest feature values are joined from feature views onto entity rows. Event timestamps are also used to ensure that old feature values aren't served to models during online serving.

PreviousFeature serviceNextArchitecture

Last updated 3 years ago

Was this helpful?