LogoLogo
v0.12-branch
v0.12-branch
  • Introduction
  • Community
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data source
      • Entity
      • Feature view
      • Feature service
      • Feature retrieval
    • Architecture
      • Overview
      • Feature repository
      • Registry
      • Offline store
      • Online store
      • Provider
    • FAQ
  • Tutorials
    • Overview
    • Driver ranking
    • Fraud detection on GCP
    • Real-time credit scoring on AWS
  • How-to Guides
    • Running Feast with GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
    • Running Feast in production
    • Upgrading from Feast 0.9
    • Adding a custom provider
    • Adding a new online store
    • Adding a new offline store
  • Reference
    • Data sources
      • File
      • BigQuery
      • Redshift
    • Offline stores
      • File
      • BigQuery
      • Redshift
    • Online stores
      • SQLite
      • Redis
      • Datastore
      • DynamoDB
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • What is a feature repository?
  • Structure of a feature repository
  • The feature_store.yaml configuration file
  • The .feastignore file
  • Feature definitions
  • Next steps

Was this helpful?

Edit on Git
Export as PDF
  1. Reference

Feature repository

Feast users use Feast to manage two important sets of configuration:

  • Configuration about how to run Feast on your infrastructure

  • Feature definitions

With Feast, the above configuration can be written declaratively and stored as code in a central location. This central location is called a feature repository. The feature repository is the declarative source of truth for what the desired state of a feature store should be.

The Feast CLI uses the feature repository to configure, deploy, and manage your feature store.

What is a feature repository?

A feature repository consists of:

  • A collection of Python files containing feature declarations.

  • A feature_store.yaml file containing infrastructural configuration.

  • A .feastignore file containing paths in the feature repository to ignore.

Typically, users store their feature repositories in a Git repository, especially when working in teams. However, using Git is not a requirement.

Structure of a feature repository

The structure of a feature repository is as follows:

  • The root of the repository should contain a feature_store.yaml file and may contain a .feastignore file.

  • The repository should contain Python files that contain feature definitions.

  • The repository can contain other files as well, including documentation and potentially data files.

An example structure of a feature repository is shown below:

$ tree -a
.
├── data
│   └── driver_stats.parquet
├── driver_features.py
├── feature_store.yaml
└── .feastignore

1 directory, 4 files

A couple of things to note about the feature repository:

  • Feast reads all Python files recursively when feast apply is ran, including subdirectories, even if they don't contain feature definitions.

  • It's recommended to add .feastignore and add paths to all imperative scripts if you need to store them inside the feature registry.

The feature_store.yaml configuration file

The configuration for a feature store is stored in a file named feature_store.yaml , which must be located at the root of a feature repository. An example feature_store.yaml file is shown below:

feature_store.yaml
project: my_feature_repo_1
registry: data/metadata.db
provider: local
online_store:
    path: data/online_store.db

The .feastignore file

This file contains paths that should be ignored when running feast apply. An example .feastignore is shown below:

.feastignore
# Ignore virtual environment
venv

# Ignore a specific Python file
scripts/foo.py

# Ignore all Python files directly under scripts directory
scripts/*.py

# Ignore all "foo.py" anywhere under scripts directory
scripts/**/foo.py

Feature definitions

A feature repository can also contain one or more Python files that contain feature definitions. An example feature definition file is shown below:

driver_features.py
from datetime import timedelta

from feast import BigQuerySource, Entity, Feature, FeatureView, ValueType

driver_locations_source = BigQuerySource(
    table_ref="rh_prod.ride_hailing_co.drivers",
    event_timestamp_column="event_timestamp",
    created_timestamp_column="created_timestamp",
)

driver = Entity(
    name="driver",
    value_type=ValueType.INT64,
    description="driver id",
)

driver_locations = FeatureView(
    name="driver_locations",
    entities=["driver"],
    ttl=timedelta(days=1),
    features=[
        Feature(name="lat", dtype=ValueType.FLOAT),
        Feature(name="lon", dtype=ValueType.STRING),
    ],
    batch_source=driver_locations_source,
)

To declare new feature definitions, just add code to the feature repository, either in existing files or in a new file. For more information on how to define features, see Feature Views.

Next steps

PreviousAmazon Web ServicesNextfeature_store.yaml

Last updated 3 years ago

Was this helpful?

The feature_store.yaml file configures how the feature store should run. See for more details.

See for more details.

See to get started with an example feature repository.

See , , or Feature Views for more information on the configuration files that live in a feature registry.

feature_store.yaml
.feastignore
Create a feature repository
feature_store.yaml
.feastignore