LogoLogo
v0.22-branch
v0.22-branch
  • Introduction
  • Community
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data source
      • Dataset
      • Entity
      • Feature view
      • Stream feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
    • Architecture
      • Overview
      • Feature repository
      • Registry
      • Offline store
      • Online store
      • Provider
    • Learning by example
    • Third party integrations
    • FAQ
  • Tutorials
    • Overview
    • Driver ranking
    • Fraud detection on GCP
    • Real-time credit scoring on AWS
    • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
    • Running Feast in production
    • Deploying a Java feature server on Kubernetes
    • Upgrading from Feast 0.9
    • Adding a custom provider
    • Adding a new online store
    • Adding a new offline store
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Data sources
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
    • Offline stores
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
    • Online stores
      • SQLite
      • Redis
      • Datastore
      • DynamoDB
      • PostgreSQL (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • Go-based feature retrieval
    • [Alpha] Web UI
    • [Alpha] Data quality monitoring
    • [Alpha] On demand feature view
    • [Alpha] AWS Lambda feature server
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Description
  • Examples

Was this helpful?

Edit on GitHub
Export as PDF
  1. Reference
  2. Data sources

PostgreSQL (contrib)

Description

NOTE: The Postgres plugin is a contrib plugin. This means it may not be fully stable.

The PostgreSQL data source allows for the retrieval of historical feature values from a PostgreSQL database for building training datasets as well as materializing features into an online store.

Examples

Defining a Postgres source

from feast.infra.offline_stores.contrib.postgres_offline_store.postgres_source import (
    PostgreSQLSource,
)

driver_stats_source = PostgreSQLSource(
    name="feast_driver_hourly_stats",
    query="SELECT * FROM feast_driver_hourly_stats",
    timestamp_field="event_timestamp",
    created_timestamp_column="created",
)
PreviousSpark (contrib)NextOffline stores

Last updated 2 years ago

Was this helpful?