LogoLogo
v0.30-branch
v0.30-branch
  • Introduction
  • Community & getting help
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data ingestion
      • Entity
      • Feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
      • [Alpha] Saved dataset
    • Architecture
      • Overview
      • Registry
      • Offline store
      • Online store
      • Batch Materialization Engine
      • Provider
    • Third party integrations
    • FAQ
  • Tutorials
    • Sample use-case tutorials
      • Driver ranking
      • Fraud detection on GCP
      • Real-time credit scoring on AWS
      • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
      • Scaling Feast
      • Structuring Feature Repos
    • Running Feast in production (e.g. on Kubernetes)
    • Upgrading for Feast 0.20+
    • Customizing Feast
      • Adding a custom batch materialization engine
      • Adding a new offline store
      • Adding a new online store
      • Adding a custom provider
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Type System
    • Data sources
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Offline stores
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Online stores
      • Overview
      • SQLite
      • Snowflake
      • Redis
      • Datastore
      • DynamoDB
      • Bigtable
      • PostgreSQL (contrib)
      • Cassandra + Astra DB (contrib)
      • MySQL (contrib)
      • Rockset (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
      • Azure
    • Batch Materialization Engines
      • Bytewax
      • Snowflake
      • AWS Lambda (alpha)
      • Spark (contrib)
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • [Alpha] Go feature server
      • [Alpha] AWS Lambda feature server
    • [Beta] Web UI
    • [Alpha] On demand feature view
    • [Alpha] Data quality monitoring
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Backwards Compatibility Policy
      • Maintainer Docs
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Functionality
  • Functionality Matrix

Was this helpful?

Edit on GitHub
Export as PDF
  1. Reference
  2. Data sources

Overview

PreviousData sourcesNextFile

Last updated 2 years ago

Was this helpful?

Functionality

In Feast, each batch data source is associated with a corresponding offline store. For example, a SnowflakeSource can only be processed by the Snowflake offline store. Otherwise, the primary difference between batch data sources is the set of supported types. Feast has an internal type system, and aims to support eight primitive types (bytes, string, int32, int64, float32, float64, bool, and timestamp) along with the corresponding array types. However, not every batch data source supports all of these types.

For more details on the Feast type system, see .

Functionality Matrix

There are currently four core batch data source implementations: FileSource, BigQuerySource, SnowflakeSource, and RedshiftSource. There are several additional implementations contributed by the Feast community (PostgreSQLSource, SparkSource, and TrinoSource), which are not guaranteed to be stable or to match the functionality of the core implementations. Details for each specific data source can be found .

Below is a matrix indicating which data sources support which types.

File
BigQuery
Snowflake
Redshift
Postgres
Spark
Trino

bytes

yes

yes

yes

yes

yes

yes

yes

string

yes

yes

yes

yes

yes

yes

yes

int32

yes

yes

yes

yes

yes

yes

yes

int64

yes

yes

yes

yes

yes

yes

yes

float32

yes

yes

yes

yes

yes

yes

yes

float64

yes

yes

yes

yes

yes

yes

yes

bool

yes

yes

yes

yes

yes

yes

yes

timestamp

yes

yes

yes

yes

yes

yes

yes

array types

yes

yes

no

no

yes

yes

no

here
here