LogoLogo
v0.42-branch
v0.42-branch
  • Introduction
  • Community & getting help
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Architecture
      • Overview
      • Language
      • Push vs Pull Model
      • Write Patterns
      • Feature Transformation
      • Feature Serving and Model Inference
      • Role-Based Access Control (RBAC)
    • Concepts
      • Overview
      • Project
      • Data ingestion
      • Entity
      • Feature view
      • Feature retrieval
      • Point-in-time joins
      • [Alpha] Saved dataset
      • Permission
      • Tags
    • Components
      • Overview
      • Registry
      • Offline store
      • Online store
      • Batch Materialization Engine
      • Provider
      • Authorization Manager
    • Third party integrations
    • FAQ
  • Tutorials
    • Sample use-case tutorials
      • Driver ranking
      • Fraud detection on GCP
      • Real-time credit scoring on AWS
      • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
      • Scaling Feast
      • Structuring Feature Repos
    • Running Feast in production (e.g. on Kubernetes)
    • Customizing Feast
      • Adding a custom batch materialization engine
      • Adding a new offline store
      • Adding a new online store
      • Adding a custom provider
    • Adding or reusing tests
    • Starting Feast servers in TLS(SSL) Mode
  • Reference
    • Codebase Structure
    • Type System
    • Data sources
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Offline stores
      • Overview
      • Dask
      • Snowflake
      • BigQuery
      • Redshift
      • DuckDB
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
      • Remote Offline
    • Online stores
      • Overview
      • SQLite
      • Snowflake
      • Redis
      • Dragonfly
      • IKV
      • Datastore
      • DynamoDB
      • Bigtable
      • Remote
      • PostgreSQL
      • Cassandra + Astra DB
      • Couchbase
      • MySQL
      • Hazelcast
      • ScyllaDB
      • SingleStore
    • Registries
      • Local
      • S3
      • GCS
      • SQL
      • Snowflake
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
      • Azure
    • Batch Materialization Engines
      • Snowflake
      • AWS Lambda (alpha)
      • Spark (contrib)
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • [Alpha] Go feature server
      • Offline Feature Server
    • [Beta] Web UI
    • [Beta] On demand feature view
    • [Alpha] Vector Database
    • [Alpha] Data quality monitoring
    • [Alpha] Streaming feature computation with Denormalized
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Backwards Compatibility Policy
      • Maintainer Docs
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Description
  • Getting started
  • Example
  • Functionality Matrix
  • PGVector

Was this helpful?

Edit on GitHub
Export as PDF
  1. Reference
  2. Online stores

PostgreSQL

Description

The PostgreSQL online store provides support for materializing feature values into a PostgreSQL database for serving online features.

  • Only the latest feature values are persisted

  • sslmode, sslkey_path, sslcert_path, and sslrootcert_path are optional

Getting started

In order to use this online store, you'll need to run pip install 'feast[postgres]'. You can get started by then running feast init -t postgres.

Example

feature_store.yaml
project: my_feature_repo
registry: data/registry.db
provider: local
online_store:
    type: postgres
    host: DB_HOST
    port: DB_PORT
    database: DB_NAME
    db_schema: DB_SCHEMA
    user: DB_USERNAME
    password: DB_PASSWORD
    sslmode: verify-ca
    sslkey_path: /path/to/client-key.pem
    sslcert_path: /path/to/client-cert.pem
    sslrootcert_path: /path/to/server-ca.pem
    vector_enabled: false
    vector_len: 512

Functionality Matrix

Postgres

write feature values to the online store

yes

read feature values from the online store

yes

update infrastructure (e.g. tables) in the online store

yes

teardown infrastructure (e.g. tables) in the online store

yes

generate a plan of infrastructure changes

no

support for on-demand transforms

yes

readable by Python SDK

yes

readable by Java

no

readable by Go

no

support for entityless feature views

yes

support for concurrent writing to the same key

no

support for ttl (time to live) at retrieval

no

support for deleting expired data

no

collocated by feature view

yes

collocated by feature service

no

collocated by entity key

no

PGVector

The vector_len parameter can be used to specify the length of the vector. The default value is 512.

Please make sure to follow the instructions in the repository, which, as the time of this writing, requires you to run CREATE EXTENSION vector; in the database.

Then you can use retrieve_online_documents to retrieve the top k closest vectors to a query vector. For the Retrieval Augmented Generation (RAG) use-case, you have to embed the query prior to passing the query vector.

python
from feast import FeatureStore
from feast.infra.online_stores.postgres_online_store import retrieve_online_documents

feature_store = FeatureStore(repo_path=".")

query_vector = [0.1, 0.2, 0.3, 0.4, 0.5]
top_k = 5

feature_values = retrieve_online_documents(
    feature_store=feature_store,
    feature_view_name="document_fv:embedding_float",
    query_vector=query_vector,
    top_k=top_k,
)
PreviousRemoteNextCassandra + Astra DB

Last updated 5 months ago

Was this helpful?

The full set of configuration options is available in .

The set of functionality supported by online stores is described in detail . Below is a matrix indicating which functionality is supported by the Postgres online store.

To compare this set of functionality against other online stores, please see the full .

The Postgres online store supports the use of for storing feature values. To enable PGVector, set vector_enabled: true in the online store configuration.

PostgreSQLOnlineStoreConfig
PGVector
here
functionality matrix