LogoLogo
v0.24-branch
v0.24-branch
  • Introduction
  • Community & getting help
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data ingestion
      • Entity
      • Feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
      • [Alpha] Saved dataset
    • Architecture
      • Overview
      • Registry
      • Offline store
      • Online store
      • Batch Materialization Engine
      • Provider
    • Third party integrations
    • FAQ
  • Tutorials
    • Sample use-case tutorials
      • Driver ranking
      • Fraud detection on GCP
      • Real-time credit scoring on AWS
      • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
      • Scaling Feast
      • Structuring Feature Repos
    • Running Feast in production (e.g. on Kubernetes)
    • Upgrading for Feast 0.20+
    • Customizing Feast
      • Adding a custom batch materialization engine
      • Adding a new offline store
      • Adding a new online store
      • Adding a custom provider
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Type System
    • Data sources
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Offline stores
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Online stores
      • Overview
      • SQLite
      • Snowflake
      • Redis
      • Datastore
      • DynamoDB
      • PostgreSQL (contrib)
      • Cassandra + Astra DB (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
      • Azure
    • Batch Materialization Engines
      • Bytewax
      • Snowflake
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • [Alpha] Go feature server
      • [Alpha] AWS Lambda feature server
    • [Beta] Web UI
    • [Alpha] On demand feature view
    • [Alpha] Data quality monitoring
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Backwards Compatibility Policy
      • Maintainer Docs
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Description
  • Example
  • Functionality Matrix
  • Permissions

Was this helpful?

Edit on GitHub
Export as PDF
  1. Reference
  2. Offline stores

Redshift

PreviousBigQueryNextSpark (contrib)

Last updated 2 years ago

Was this helpful?

Description

The Redshift offline store provides support for reading .

  • All joins happen within Redshift.

  • Entity dataframes can be provided as a SQL query or can be provided as a Pandas dataframe. A Pandas dataframes will be uploaded to Redshift temporarily in order to complete join operations.

Example

feature_store.yaml
project: my_feature_repo
registry: data/registry.db
provider: aws
offline_store:
  type: redshift
  region: us-west-2
  cluster_id: feast-cluster
  database: feast-database
  user: redshift-user
  s3_staging_location: s3://feast-bucket/redshift
  iam_role: arn:aws:iam::123456789012:role/redshift_s3_access_role

The full set of configuration options is available in .

Functionality Matrix

Redshift

get_historical_features (point-in-time correct join)

yes

pull_latest_from_table_or_query (retrieve latest feature values)

yes

pull_all_from_table_or_query (retrieve a saved dataset)

yes

offline_write_batch (persist dataframes to offline store)

yes

write_logged_features (persist logged features to offline store)

yes

Below is a matrix indicating which functionality is supported by RedshiftRetrievalJob.

Redshift

export to dataframe

yes

export to arrow table

yes

export to arrow batches

yes

export to SQL

yes

export to data lake (S3, GCS, etc.)

no

export to data warehouse

yes

export as Spark dataframe

no

local execution of Python-based on-demand transforms

yes

remote execution of Python-based on-demand transforms

no

persist results in the offline store

yes

preview the query plan before execution

yes

read partitioned data

yes

Permissions

Feast requires the following permissions in order to execute commands for Redshift offline store:

Command

Permissions

Resources

Apply

redshift-data:DescribeTable

redshift:GetClusterCredentials

arn:aws:redshift:<region>:<account_id>:dbuser:<redshift_cluster_id>/<redshift_username>

arn:aws:redshift:<region>:<account_id>:dbname:<redshift_cluster_id>/<redshift_database_name>

arn:aws:redshift:<region>:<account_id>:cluster:<redshift_cluster_id>

Materialize

redshift-data:ExecuteStatement

arn:aws:redshift:<region>:<account_id>:cluster:<redshift_cluster_id>

Materialize

redshift-data:DescribeStatement

*

Materialize

s3:ListBucket

s3:GetObject

s3:DeleteObject

arn:aws:s3:::<bucket_name>

arn:aws:s3:::<bucket_name>/*

Get Historical Features

redshift-data:ExecuteStatement

redshift:GetClusterCredentials

arn:aws:redshift:<region>:<account_id>:dbuser:<redshift_cluster_id>/<redshift_username>

arn:aws:redshift:<region>:<account_id>:dbname:<redshift_cluster_id>/<redshift_database_name>

arn:aws:redshift:<region>:<account_id>:cluster:<redshift_cluster_id>

Get Historical Features

redshift-data:DescribeStatement

*

Get Historical Features

s3:ListBucket

s3:GetObject

s3:PutObject

s3:DeleteObject

arn:aws:s3:::<bucket_name>

arn:aws:s3:::<bucket_name>/*

The following inline policy can be used to grant Feast the necessary permissions:

{
    "Statement": [
        {
            "Action": [
                "s3:ListBucket",
                "s3:PutObject",
                "s3:GetObject",
                "s3:DeleteObject"
            ],
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::<bucket_name>/*",
                "arn:aws:s3:::<bucket_name>"
            ]
        },
        {
            "Action": [
                "redshift-data:DescribeTable",
                "redshift:GetClusterCredentials",
                "redshift-data:ExecuteStatement"
            ],
            "Effect": "Allow",
            "Resource": [
                "arn:aws:redshift:<region>:<account_id>:dbuser:<redshift_cluster_id>/<redshift_username>",
                "arn:aws:redshift:<region>:<account_id>:dbname:<redshift_cluster_id>/<redshift_database_name>",
                "arn:aws:redshift:<region>:<account_id>:cluster:<redshift_cluster_id>"
            ]
        },
        {
            "Action": [
                "redshift-data:DescribeStatement"
            ],
            "Effect": "Allow",
            "Resource": "*"
        }
    ],
    "Version": "2012-10-17"
}

The following inline policy can be used to grant Redshift necessary permissions to access S3:

{
    "Statement": [
        {
            "Action": "s3:*",
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::feast-integration-tests",
                "arn:aws:s3:::feast-integration-tests/*"
            ]
        }
    ],
    "Version": "2012-10-17"
}

While the following trust relationship is necessary to make sure that Redshift, and only Redshift can assume this role:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "redshift.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

The set of functionality supported by offline stores is described in detail . Below is a matrix indicating which functionality is supported by the Redshift offline store.

To compare this set of functionality against other offline stores, please see the full .

In addition to this, Redshift offline store requires an IAM role that will be used by Redshift itself to interact with S3. More concretely, Redshift has to use this IAM role to run and commands. Once created, this IAM role needs to be configured in feature_store.yaml file as offline_store: iam_role.

RedshiftSources
RedshiftOfflineStoreConfig
UNLOAD
COPY
here
functionality matrix