LogoLogo
v0.27-branch
v0.27-branch
  • Introduction
  • Community & getting help
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data ingestion
      • Entity
      • Feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
      • [Alpha] Saved dataset
    • Architecture
      • Overview
      • Registry
      • Offline store
      • Online store
      • Batch Materialization Engine
      • Provider
    • Third party integrations
    • FAQ
  • Tutorials
    • Sample use-case tutorials
      • Driver ranking
      • Fraud detection on GCP
      • Real-time credit scoring on AWS
      • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
      • Scaling Feast
      • Structuring Feature Repos
    • Running Feast in production (e.g. on Kubernetes)
    • Upgrading for Feast 0.20+
    • Customizing Feast
      • Adding a custom batch materialization engine
      • Adding a new offline store
      • Adding a new online store
      • Adding a custom provider
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Type System
    • Data sources
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Offline stores
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Online stores
      • Overview
      • SQLite
      • Snowflake
      • Redis
      • Datastore
      • DynamoDB
      • Bigtable
      • PostgreSQL (contrib)
      • Cassandra + Astra DB (contrib)
      • MySQL (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
      • Azure
    • Batch Materialization Engines
      • Bytewax
      • Snowflake
      • AWS Lambda (alpha)
      • Spark (contrib)
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • [Alpha] Go feature server
      • [Alpha] AWS Lambda feature server
    • [Beta] Web UI
    • [Alpha] On demand feature view
    • [Alpha] Data quality monitoring
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Backwards Compatibility Policy
      • Maintainer Docs
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Description
  • Getting started
  • Disclaimer
  • Example
  • Functionality Matrix

Was this helpful?

Edit on GitHub
Export as PDF
  1. Reference
  2. Offline stores

Azure Synapse + Azure SQL (contrib)

PreviousTrino (contrib)NextOnline stores

Last updated 2 years ago

Was this helpful?

Description

The MsSQL offline store provides support for reading . Specifically, it is developed to read from on Microsoft Azure

  • Entity dataframes can be provided as a SQL query or can be provided as a Pandas dataframe.

Getting started

In order to use this offline store, you'll need to run pip install 'feast[azure]'. You can get started by then following this .

Disclaimer

The MsSQL offline store does not achieve full test coverage. Please do not assume complete stability.

Example

feature_store.yaml
registry:
  registry_store_type: AzureRegistryStore
  path: ${REGISTRY_PATH} # Environment Variable
project: production
provider: azure
online_store:
    type: redis
    connection_string: ${REDIS_CONN} # Environment Variable
offline_store:
    type: mssql
    connection_string: ${SQL_CONN}  # Environment Variable

Functionality Matrix

MsSql

get_historical_features (point-in-time correct join)

yes

pull_latest_from_table_or_query (retrieve latest feature values)

yes

pull_all_from_table_or_query (retrieve a saved dataset)

yes

offline_write_batch (persist dataframes to offline store)

no

write_logged_features (persist logged features to offline store)

no

Below is a matrix indicating which functionality is supported by MsSqlServerRetrievalJob.

MsSql

export to dataframe

yes

export to arrow table

yes

export to arrow batches

no

export to SQL

no

export to data lake (S3, GCS, etc.)

no

export to data warehouse

no

local execution of Python-based on-demand transforms

no

remote execution of Python-based on-demand transforms

no

persist results in the offline store

yes

The set of functionality supported by offline stores is described in detail . Below is a matrix indicating which functionality is supported by the Spark offline store.

To compare this set of functionality against other offline stores, please see the full .

MsSQL Sources
Synapse SQL
tutorial
here
functionality matrix