BigQuery

Description

The BigQuery offline store provides support for reading BigQuerySources.

  • All joins happen within BigQuery.

  • Entity dataframes can be provided as a SQL query or can be provided as a Pandas dataframe. A Pandas dataframes will be uploaded to BigQuery as a table (marked for expiration) in order to complete join operations.

Getting started

In order to use this offline store, you'll need to run pip install 'feast[gcp]'. You can get started by then running feast init -t gcp.

Example

feature_store.yaml
project: my_feature_repo
registry: gs://my-bucket/data/registry.db
provider: gcp
offline_store:
  type: bigquery
  dataset: feast_bq_dataset

The full set of configuration options is available in BigQueryOfflineStoreConfig.

Functionality Matrix

The set of functionality supported by offline stores is described in detail here. Below is a matrix indicating which functionality is supported by the BigQuery offline store.

Below is a matrix indicating which functionality is supported by BigQueryRetrievalJob.

*See GitHub issue for details on proposed solutions for enabling the BigQuery offline store to understand tables that use _PARTITIONTIME as the partition column.

To compare this set of functionality against other offline stores, please see the full functionality matrix.

Last updated