Table formats

Overview

Table formats are metadata and transaction layers built on top of data storage formats (like Parquet). They provide advanced capabilities for managing large-scale data lakes, including ACID transactions, time travel, schema evolution, and efficient data management.

Feast supports modern table formats to enable data lakehouse architectures with your feature store.

Supported Table Formats

Apache Iceberg

Apache Iceberg is an open table format designed for huge analytic datasets. It provides:

  • ACID transactions: Atomic commits with snapshot isolation

  • Time travel: Query data as of any snapshot

  • Schema evolution: Add, drop, rename, or reorder columns safely

  • Hidden partitioning: Partitioning is transparent to users

  • Performance: Advanced pruning and filtering

Basic Configuration

from feast.table_format import IcebergFormat

iceberg_format = IcebergFormat(
    catalog="my_catalog",
    namespace="my_database"
)

Configuration Options

Parameter
Type
Description

catalog

str (optional)

Iceberg catalog name

namespace

str (optional)

Namespace/schema within the catalog

properties

dict (optional)

Additional Iceberg configuration properties

Common Properties

iceberg_format = IcebergFormat(
    catalog="spark_catalog",
    namespace="production",
    properties={
        # Snapshot selection
        "snapshot-id": "123456789",
        "as-of-timestamp": "1609459200000",  # Unix timestamp in ms

        # Performance tuning
        "read.split.target-size": "134217728",  # 128 MB splits
        "read.parquet.vectorization.enabled": "true",

        # Advanced configuration
        "io-impl": "org.apache.iceberg.hadoop.HadoopFileIO",
        "warehouse": "s3://my-bucket/warehouse"
    }
)

Time Travel Example

# Read from a specific snapshot
iceberg_format = IcebergFormat(
    catalog="spark_catalog",
    namespace="lakehouse"
)
iceberg_format.set_property("snapshot-id", "7896524153287651133")

# Or read as of a timestamp
iceberg_format.set_property("as-of-timestamp", "1609459200000")

Delta Lake

Delta Lake is an open-source storage layer that brings ACID transactions to Apache Spark and big data workloads. It provides:

  • ACID transactions: Serializable isolation for reads and writes

  • Time travel: Access and revert to earlier versions

  • Schema enforcement: Prevent bad data from corrupting tables

  • Unified batch and streaming: Process data incrementally

  • Audit history: Full history of all changes

Basic Configuration

from feast.table_format import DeltaFormat

delta_format = DeltaFormat()

Configuration Options

Parameter
Type
Description

checkpoint_location

str (optional)

Location for Delta transaction log checkpoints

properties

dict (optional)

Additional Delta configuration properties

Common Properties

delta_format = DeltaFormat(
    checkpoint_location="s3://my-bucket/checkpoints",
    properties={
        # Time travel
        "versionAsOf": "5",
        "timestampAsOf": "2024-01-01 00:00:00",

        # Performance optimization
        "delta.autoOptimize.optimizeWrite": "true",
        "delta.autoOptimize.autoCompact": "true",

        # Data skipping
        "delta.dataSkippingNumIndexedCols": "32",

        # Z-ordering
        "delta.autoOptimize.zOrderCols": "event_timestamp"
    }
)

Time Travel Example

# Read from a specific version
delta_format = DeltaFormat()
delta_format.set_property("versionAsOf", "10")

# Or read as of a timestamp
delta_format = DeltaFormat()
delta_format.set_property("timestampAsOf", "2024-01-15 12:00:00")

Apache Hudi

Apache Hudi (Hadoop Upserts Deletes and Incrementals) is a data lake storage framework for simplifying incremental data processing. It provides:

  • Upserts and deletes: Efficient record-level updates

  • Incremental queries: Process only changed data

  • Time travel: Query historical versions

  • Multiple table types: Optimize for read vs. write workloads

  • Change data capture: Track data changes over time

Basic Configuration

from feast.table_format import HudiFormat

hudi_format = HudiFormat(
    table_type="COPY_ON_WRITE",
    record_key="user_id",
    precombine_field="updated_at"
)

Configuration Options

Parameter
Type
Description

table_type

str (optional)

COPY_ON_WRITE or MERGE_ON_READ

record_key

str (optional)

Field(s) that uniquely identify a record

precombine_field

str (optional)

Field used to determine the latest version

properties

dict (optional)

Additional Hudi configuration properties

Table Types

COPY_ON_WRITE (COW)

  • Stores data in columnar format (Parquet)

  • Updates create new file versions

  • Best for read-heavy workloads

  • Lower query latency

hudi_format = HudiFormat(
    table_type="COPY_ON_WRITE",
    record_key="id",
    precombine_field="timestamp"
)

MERGE_ON_READ (MOR)

  • Uses columnar + row-based formats

  • Updates written to delta logs

  • Best for write-heavy workloads

  • Lower write latency

hudi_format = HudiFormat(
    table_type="MERGE_ON_READ",
    record_key="id",
    precombine_field="timestamp"
)

Common Properties

hudi_format = HudiFormat(
    table_type="COPY_ON_WRITE",
    record_key="user_id",
    precombine_field="updated_at",
    properties={
        # Query type
        "hoodie.datasource.query.type": "snapshot",  # or "incremental"

        # Incremental queries
        "hoodie.datasource.read.begin.instanttime": "20240101000000",
        "hoodie.datasource.read.end.instanttime": "20240102000000",

        # Indexing
        "hoodie.index.type": "BLOOM",

        # Compaction (for MOR tables)
        "hoodie.compact.inline": "true",
        "hoodie.compact.inline.max.delta.commits": "5",

        # Clustering
        "hoodie.clustering.inline": "true"
    }
)

Incremental Query Example

# Process only new/changed data
hudi_format = HudiFormat(
    table_type="COPY_ON_WRITE",
    record_key="id",
    precombine_field="timestamp",
    properties={
        "hoodie.datasource.query.type": "incremental",
        "hoodie.datasource.read.begin.instanttime": "20240101000000",
        "hoodie.datasource.read.end.instanttime": "20240102000000"
    }
)

Table Format vs File Format

It's important to understand the distinction:

Aspect
File Format
Table Format

What it is

Physical encoding of data

Metadata and transaction layer

Examples

Parquet, Avro, ORC, CSV

Iceberg, Delta Lake, Hudi

Handles

Data serialization

ACID, versioning, schema evolution

Layer

Storage layer

Metadata layer

Can be used together

# Table format (metadata layer) built on top of file format (storage layer)
from feast.infra.offline_stores.contrib.spark_offline_store.spark_source import SparkSource
from feast.table_format import IcebergFormat

iceberg = IcebergFormat(catalog="my_catalog", namespace="db")

source = SparkSource(
    name="features",
    path="catalog.db.table",
    file_format="parquet",      # Underlying storage format
    table_format=iceberg,        # Table metadata format
    timestamp_field="event_timestamp"
)

Benefits of Table Formats

Reliability

  • ACID transactions: Ensure data consistency across concurrent operations

  • Automatic retries: Handle transient failures gracefully

  • Schema validation: Prevent incompatible schema changes

  • Data quality: Constraints and validation rules

Performance

  • Data skipping: Read only relevant files based on metadata

  • Partition pruning: Skip entire partitions based on predicates

  • Compaction: Merge small files for better performance

  • Columnar pruning: Read only necessary columns

  • Indexing: Advanced indexing for fast lookups

Flexibility

  • Schema evolution: Add, remove, or modify columns without rewriting data

  • Time travel: Access historical data states for auditing or debugging

  • Incremental processing: Process only changed data efficiently

  • Multiple readers/writers: Concurrent access without conflicts

Choosing the Right Table Format

Use Case
Recommended Format
Why

Large-scale analytics with frequent schema changes

Iceberg

Best schema evolution, hidden partitioning, mature ecosystem

Streaming + batch workloads

Delta Lake

Unified architecture, strong integration with Spark, good docs

CDC and upsert-heavy workloads

Hudi

Efficient record-level updates, incremental queries

Read-heavy analytics

Iceberg or Delta

Excellent query performance

Write-heavy transactional

Hudi (MOR)

Optimized for fast writes

Multi-engine support

Iceberg

Widest engine support (Spark, Flink, Trino, etc.)

Best Practices

1. Choose Appropriate Partitioning

# Iceberg - hidden partitioning
iceberg_format.set_property("partition-spec", "days(event_timestamp)")

# Delta - explicit partitioning in data source
# Hudi - configure via properties
hudi_format.set_property("hoodie.datasource.write.partitionpath.field", "date")

2. Enable Optimization Features

# Delta auto-optimize
delta_format.set_property("delta.autoOptimize.optimizeWrite", "true")
delta_format.set_property("delta.autoOptimize.autoCompact", "true")

# Hudi compaction
hudi_format.set_property("hoodie.compact.inline", "true")

3. Manage Table History

# Regularly clean up old snapshots/versions
# For Iceberg: Use expire_snapshots() procedure
# For Delta: Use VACUUM command
# For Hudi: Configure retention policies

4. Monitor Metadata Size

  • Table formats maintain metadata for all operations

  • Monitor metadata size and clean up old versions

  • Configure retention policies based on your needs

5. Test Schema Evolution

# Always test schema changes in non-production first
# Ensure backward compatibility
# Use proper migration procedures

Data Source Support

Currently, table formats are supported with:

Future support planned for:

  • BigQuery (Iceberg)

  • Snowflake (Iceberg)

  • Other data sources

See Also

Last updated

Was this helpful?