[Alpha] On demand feature view
Warning: This is an experimental feature. It's intended for early testing and feedback, and could change without warnings in future releases.
Overview
On demand feature views allows data scientists to use existing features and request time data (features only available at request time) to transform and create new features. Users define python transformation logic which is executed in both historical retrieval and online retrieval paths.
Currently, these transformations are executed locally. This is fine for online serving, but does not scale well offline.
Why use on demand feature views?
This enables data scientists to easily impact the online feature retrieval path. For example, a data scientist could
Call
get_historical_features
to generate a training dataframeIterate in notebook on feature engineering in Pandas
Copy transformation logic into on demand feature views and commit to a dev branch of the feature repository
Verify with
get_historical_features
(on a small dataset) that the transformation gives expected output over historical dataVerify with
get_online_features
on dev branch that the transformation correctly outputs online featuresSubmit a pull request to the staging / prod branches which impact production traffic
CLI
There are new CLI commands:
feast on-demand-feature-views list
lists all registered on demand feature view afterfeast apply
is runfeast on-demand-feature-views describe [NAME]
describes the definition of an on demand feature view
Example
See https://github.com/feast-dev/on-demand-feature-views-demo for an example on how to use on demand feature views.
Registering transformations
We register RequestSource
inputs and the transform in on_demand_feature_view
:
Feature retrieval
The on demand feature view's name is the function name (i.e. transformed_conv_rate
).
And then to retrieve historical or online features, we can call this in a feature service or reference individual features: