LogoLogo
v0.42-branch
v0.42-branch
  • Introduction
  • Community & getting help
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Architecture
      • Overview
      • Language
      • Push vs Pull Model
      • Write Patterns
      • Feature Transformation
      • Feature Serving and Model Inference
      • Role-Based Access Control (RBAC)
    • Concepts
      • Overview
      • Project
      • Data ingestion
      • Entity
      • Feature view
      • Feature retrieval
      • Point-in-time joins
      • [Alpha] Saved dataset
      • Permission
      • Tags
    • Components
      • Overview
      • Registry
      • Offline store
      • Online store
      • Batch Materialization Engine
      • Provider
      • Authorization Manager
    • Third party integrations
    • FAQ
  • Tutorials
    • Sample use-case tutorials
      • Driver ranking
      • Fraud detection on GCP
      • Real-time credit scoring on AWS
      • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
      • Scaling Feast
      • Structuring Feature Repos
    • Running Feast in production (e.g. on Kubernetes)
    • Customizing Feast
      • Adding a custom batch materialization engine
      • Adding a new offline store
      • Adding a new online store
      • Adding a custom provider
    • Adding or reusing tests
    • Starting Feast servers in TLS(SSL) Mode
  • Reference
    • Codebase Structure
    • Type System
    • Data sources
      • Overview
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
    • Offline stores
      • Overview
      • Dask
      • Snowflake
      • BigQuery
      • Redshift
      • DuckDB
      • Spark (contrib)
      • PostgreSQL (contrib)
      • Trino (contrib)
      • Azure Synapse + Azure SQL (contrib)
      • Remote Offline
    • Online stores
      • Overview
      • SQLite
      • Snowflake
      • Redis
      • Dragonfly
      • IKV
      • Datastore
      • DynamoDB
      • Bigtable
      • Remote
      • PostgreSQL
      • Cassandra + Astra DB
      • Couchbase
      • MySQL
      • Hazelcast
      • ScyllaDB
      • SingleStore
    • Registries
      • Local
      • S3
      • GCS
      • SQL
      • Snowflake
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
      • Azure
    • Batch Materialization Engines
      • Snowflake
      • AWS Lambda (alpha)
      • Spark (contrib)
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • [Alpha] Go feature server
      • Offline Feature Server
    • [Beta] Web UI
    • [Beta] On demand feature view
    • [Alpha] Vector Database
    • [Alpha] Data quality monitoring
    • [Alpha] Streaming feature computation with Denormalized
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Backwards Compatibility Policy
      • Maintainer Docs
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Overview
  • Examples

Was this helpful?

Edit on GitHub
Export as PDF
  1. Getting started
  2. Concepts

Tags

Overview

Tags in Feast allow for efficient filtering of Feast objects when listing them in the UI, CLI, or querying the registry directly.

The way to define tags on the feast objects is through the definition file or directly in the object that will be applied to the feature store.

Examples

In this example we define a Feature View in a definition file that has a tag:

driver_stats_fv = FeatureView(
    name="driver_hourly_stats",
    entities=[driver],
    ttl=timedelta(days=1),
    schema=[
        Field(name="conv_rate", dtype=Float32),
        Field(name="acc_rate", dtype=Float32),
        Field(name="avg_daily_trips", dtype=Int64, description="Average daily trips"),
    ],
    online=True,
    source=driver_stats_source,
    # Tags are user defined key/value pairs that are attached to each
    # feature view
    tags={"team": "driver_performance"},
)

In this example we define a Stream Feature View that has a tag, in the code:

    sfv = StreamFeatureView(
        name="test kafka stream feature view",
        entities=[entity],
        schema=[],
        description="desc",
        timestamp_field="event_timestamp",
        source=stream_source,
        tags={"team": "driver_performance"},

An example of filtering feature-views with the tag team:driver_performance:

$ feast feature-views list --tags team:driver_performance              
NAME                       ENTITIES    TYPE
driver_hourly_stats        {'driver'}  FeatureView
driver_hourly_stats_fresh  {'driver'}  FeatureView

The same example of listing feature-views without tag filtering:

$ feast feature-views list
NAME                       ENTITIES    TYPE
driver_hourly_stats        {'driver'}  FeatureView
driver_hourly_stats_fresh  {'driver'}  FeatureView
transformed_conv_rate_fresh  {'driver'}  OnDemandFeatureView
transformed_conv_rate        {'driver'}  OnDemandFeatureView
PreviousPermissionNextComponents

Last updated 5 months ago

Was this helpful?