LogoLogo
v0.22-branch
v0.22-branch
  • Introduction
  • Community
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data source
      • Dataset
      • Entity
      • Feature view
      • Stream feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
    • Architecture
      • Overview
      • Feature repository
      • Registry
      • Offline store
      • Online store
      • Provider
    • Learning by example
    • Third party integrations
    • FAQ
  • Tutorials
    • Overview
    • Driver ranking
    • Fraud detection on GCP
    • Real-time credit scoring on AWS
    • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
    • Running Feast in production
    • Deploying a Java feature server on Kubernetes
    • Upgrading from Feast 0.9
    • Adding a custom provider
    • Adding a new online store
    • Adding a new offline store
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Data sources
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
    • Offline stores
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
    • Online stores
      • SQLite
      • Redis
      • Datastore
      • DynamoDB
      • PostgreSQL (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • Go-based feature retrieval
    • [Alpha] Web UI
    • [Alpha] Data quality monitoring
    • [Alpha] On demand feature view
    • [Alpha] AWS Lambda feature server
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Overview
  • CLI
  • Deploying as a service
  • Example
  • Initializing a feature server
  • Retrieving features from the online store
  • Pushing features to the online and offline stores

Was this helpful?

Edit on GitHub
Export as PDF
  1. Reference
  2. Feature servers

Python feature server

Overview

The feature server is an HTTP endpoint that serves features with JSON I/O. This enables users to write + read features from Feast online stores using any programming language that can make HTTP requests.

CLI

There is a CLI command that starts the server: feast serve. By default, Feast uses port 6566; the port be overridden by a --port flag.

Deploying as a service

One can also deploy a feature server by building a docker image that bundles in the project's feature_store.yaml. See helm chart for example.

A remote feature server on AWS Lambda is available. A remote feature server on GCP Cloud Run is currently being developed.

Example

Initializing a feature server

Here's the local feature server usage example with the local template:

$ feast init feature_repo
Creating a new Feast repository in /home/tsotne/feast/feature_repo.

$ cd feature_repo

$ feast apply
Registered entity driver_id
Registered feature view driver_hourly_stats
Deploying infrastructure for driver_hourly_stats

$ feast materialize-incremental $(date +%Y-%m-%d)
Materializing 1 feature views to 2021-09-09 17:00:00-07:00 into the sqlite online store.

driver_hourly_stats from 2021-09-09 16:51:08-07:00 to 2021-09-09 17:00:00-07:00:
100%|████████████████████████████████████████████████████████████████| 5/5 [00:00<00:00, 295.24it/s]

$ feast serve
This is an experimental feature. It's intended for early testing and feedback, and could change without warnings in future releases.
INFO:     Started server process [8889]
09/10/2021 10:42:11 AM INFO:Started server process [8889]
INFO:     Waiting for application startup.
09/10/2021 10:42:11 AM INFO:Waiting for application startup.
INFO:     Application startup complete.
09/10/2021 10:42:11 AM INFO:Application startup complete.
INFO:     Uvicorn running on http://127.0.0.1:6566 (Press CTRL+C to quit)
09/10/2021 10:42:11 AM INFO:Uvicorn running on http://127.0.0.1:6566 (Press CTRL+C to quit)

Retrieving features from the online store

After the server starts, we can execute cURL commands from another terminal tab:

$  curl -X POST \
  "http://localhost:6566/get-online-features" \
  -d '{
    "features": [
      "driver_hourly_stats:conv_rate",
      "driver_hourly_stats:acc_rate",
      "driver_hourly_stats:avg_daily_trips"
    ],
    "entities": {
      "driver_id": [1001, 1002, 1003]
    }
  }' | jq
{
  "metadata": {
    "feature_names": [
      "driver_id",
      "conv_rate",
      "avg_daily_trips",
      "acc_rate"
    ]
  },
  "results": [
    {
      "values": [
        1001,
        0.7037263512611389,
        308,
        0.8724706768989563
      ],
      "statuses": [
        "PRESENT",
        "PRESENT",
        "PRESENT",
        "PRESENT"
      ],
      "event_timestamps": [
        "1970-01-01T00:00:00Z",
        "2021-12-31T23:00:00Z",
        "2021-12-31T23:00:00Z",
        "2021-12-31T23:00:00Z"
      ]
    },
    {
      "values": [
        1002,
        0.038169607520103455,
        332,
        0.48534533381462097
      ],
      "statuses": [
        "PRESENT",
        "PRESENT",
        "PRESENT",
        "PRESENT"
      ],
      "event_timestamps": [
        "1970-01-01T00:00:00Z",
        "2021-12-31T23:00:00Z",
        "2021-12-31T23:00:00Z",
        "2021-12-31T23:00:00Z"
      ]
    },
    {
      "values": [
        1003,
        0.9665873050689697,
        779,
        0.7793770432472229
      ],
      "statuses": [
        "PRESENT",
        "PRESENT",
        "PRESENT",
        "PRESENT"
      ],
      "event_timestamps": [
        "1970-01-01T00:00:00Z",
        "2021-12-31T23:00:00Z",
        "2021-12-31T23:00:00Z",
        "2021-12-31T23:00:00Z"
      ]
    }
  ]
}

It's also possible to specify a feature service name instead of the list of features:

curl -X POST \
  "http://localhost:6566/get-online-features" \
  -d '{
    "feature_service": <feature-service-name>,
    "entities": {
      "driver_id": [1001, 1002, 1003]
    }
  }' | jq

Pushing features to the online and offline stores

You can push data corresponding to a push source to the online and offline stores (note that timestamps need to be strings):

You can also define a pushmode to push stream or batch data, either to the online store, offline store, or both. The feature server will throw an error if the online/offline store doesn't support the push api functionality.

The request definition for pushmode is a string parameter to where the options are: ["online", "offline", "online_and_offline"].

curl -X POST "http://localhost:6566/push" -d '{
    "push_source_name": "driver_hourly_stats_push_source",
    "df": {
            "driver_id": [1001],
            "event_timestamp": ["2022-05-13 10:59:42"],
            "created": ["2022-05-13 10:59:42"],
            "conv_rate": [1.0],
            "acc_rate": [1.0],
            "avg_daily_trips": [1000]
    },
    "to": "online_and_offline",
  }' | jq

or equivalently from Python:

import json
import requests
import pandas as pd
from datetime import datetime

event_dict = {
    "driver_id": [1001],
    "event_timestamp": [str(datetime(2021, 5, 13, 10, 59, 42))],
    "created": [str(datetime(2021, 5, 13, 10, 59, 42))],
    "conv_rate": [1.0],
    "acc_rate": [1.0],
    "avg_daily_trips": [1000],
    "string_feature": "test2",
}
push_data = {
    "push_source_name":"driver_stats_push_source",
    "df":event_dict,
    "to":"online",
}
requests.post(
    "http://localhost:6566/push",
    data=json.dumps(push_data))
PreviousFeature serversNextGo-based feature retrieval

Last updated 2 years ago

Was this helpful?