LogoLogo
v0.22-branch
v0.22-branch
  • Introduction
  • Community
  • Roadmap
  • Changelog
  • Getting started
    • Quickstart
    • Concepts
      • Overview
      • Data source
      • Dataset
      • Entity
      • Feature view
      • Stream feature view
      • Feature retrieval
      • Point-in-time joins
      • Registry
    • Architecture
      • Overview
      • Feature repository
      • Registry
      • Offline store
      • Online store
      • Provider
    • Learning by example
    • Third party integrations
    • FAQ
  • Tutorials
    • Overview
    • Driver ranking
    • Fraud detection on GCP
    • Real-time credit scoring on AWS
    • Driver stats on Snowflake
    • Validating historical features with Great Expectations
    • Using Scalable Registry
    • Building streaming features
  • How-to Guides
    • Running Feast with Snowflake/GCP/AWS
      • Install Feast
      • Create a feature repository
      • Deploy a feature store
      • Build a training dataset
      • Load data into the online store
      • Read features from the online store
    • Running Feast in production
    • Deploying a Java feature server on Kubernetes
    • Upgrading from Feast 0.9
    • Adding a custom provider
    • Adding a new online store
    • Adding a new offline store
    • Adding or reusing tests
  • Reference
    • Codebase Structure
    • Data sources
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Push
      • Kafka
      • Kinesis
      • Spark (contrib)
      • PostgreSQL (contrib)
    • Offline stores
      • File
      • Snowflake
      • BigQuery
      • Redshift
      • Spark (contrib)
      • PostgreSQL (contrib)
    • Online stores
      • SQLite
      • Redis
      • Datastore
      • DynamoDB
      • PostgreSQL (contrib)
    • Providers
      • Local
      • Google Cloud Platform
      • Amazon Web Services
    • Feature repository
      • feature_store.yaml
      • .feastignore
    • Feature servers
      • Python feature server
      • Go-based feature retrieval
    • [Alpha] Web UI
    • [Alpha] Data quality monitoring
    • [Alpha] On demand feature view
    • [Alpha] AWS Lambda feature server
    • Feast CLI reference
    • Python API reference
    • Usage
  • Project
    • Contribution process
    • Development guide
    • Versioning policy
    • Release process
    • Feast 0.9 vs Feast 0.10+
Powered by GitBook
On this page
  • Description
  • Example

Was this helpful?

Edit on GitHub
Export as PDF
  1. Reference
  2. Offline stores

PostgreSQL (contrib)

PreviousSpark (contrib)NextOnline stores

Last updated 2 years ago

Was this helpful?

Description

The PostgreSQL offline store is an offline store that provides support for reading data sources.

DISCLAIMER: This PostgreSQL offline store still does not achieve full test coverage.

  • Entity dataframes can be provided as a SQL query or can be provided as a Pandas dataframe. Pandas dataframes will be converted to a Spark dataframe and processed as a temporary view.

  • A PostgreSQLRetrievalJob is returned when calling get_historical_features().

    • This allows you to call

      • to_df to retrieve the pandas dataframe.

      • to_arrow to retrieve the dataframe as a PyArrow table.

      • to_sql to get the SQL query used to pull the features.

  • sslmode, sslkey_path, sslcert_path, and sslrootcert_path are optional

Example

feature_store.yaml
project: my_project
registry: data/registry.db
provider: local
offline_store:
  type: postgres
  host: DB_HOST
  port: DB_PORT
  database: DB_NAME
  db_schema: DB_SCHEMA
  user: DB_USERNAME
  password: DB_PASSWORD
  sslmode: verify-ca
  sslkey_path: /path/to/client-key.pem
  sslcert_path: /path/to/client-cert.pem
  sslrootcert_path: /path/to/server-ca.pem
online_store:
    path: data/online_store.db
PostgreSQL