v0.36-branch
Search
K

Spark (contrib)

Description

The Spark batch materialization engine is considered alpha status. It relies on the offline store to output feature values to S3 via to_remote_storage, and then loads them into the online store.
See SparkMaterializationEngine for configuration options.

Example

feature_store.yaml
...
offline_store:
type: snowflake.offline
...
batch_engine:
type: spark.engine
partitions: [optional num partitions to use to write to online store]

Example in Python

feature_store.py
from feast import FeatureStore, RepoConfig
from feast.repo_config import RegistryConfig
from feast.infra.online_stores.dynamodb import DynamoDBOnlineStoreConfig
from feast.infra.offline_stores.contrib.spark_offline_store.spark import SparkOfflineStoreConfig
repo_config = RepoConfig(
registry="s3://[YOUR_BUCKET]/feast-registry.db",
project="feast_repo",
provider="aws",
offline_store=SparkOfflineStoreConfig(
spark_conf={
"spark.ui.enabled": "false",
"spark.eventLog.enabled": "false",
"spark.sql.catalogImplementation": "hive",
"spark.sql.parser.quotedRegexColumnNames": "true",
"spark.sql.session.timeZone": "UTC"
}
),
batch_engine={
"type": "spark.engine",
"partitions": 10
},
online_store=DynamoDBOnlineStoreConfig(region="us-west-1"),
entity_key_serialization_version=2
)
store = FeatureStore(config=repo_config)